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Abstract implemented in parallel with concurrent error detec-
tion for rapid recovery from transient processor errors.

In processing systems where rapid recovery from
transient faults is important, schemes for multiple in- The issues associated with instruction retry are sim-
struction rollback recovery may be appropriate. Mul- ilar to those with exception handling in out-of-order
tiple instruction retry has been implemented in hard- instruction execution. If an instruction is to write to
ware by researchers and also in mainframe computers. a register and N is the maximum error (or exception)

This paper extends compiler-assisted instruction detection latency, two copies of the data must be main-
retry to a broad class of code execution failures [1]. tained for N cycles. Hardware schemes such as reorder
Five benchmarks were used to measure the perfor- buffers, history buffers, future files [9], and micro-
mance penalty of hazard resolution. Results indicate rollback [6] differ in where the updated and old values
that the enhanced pure software approach can pro- reside, circuit complexity, and rollback efficiency.
duce performance penalties consistent with existing
hardware techniques. A combined compiler/hardware A compiler-assisted approach to implementing mul-
resolution strategy is also described and evaluated. tiple instruction retry has recently been developed
Experimental results indicate a lower performance by the authors [1]. In this technique, a series of
penalty than with either a totally hardware or totally compiler transformations are used to eliminate anti-
software approach. dependencies of length < N. Our work was inspired

by the hardware-based micro-rollback design of Tamir
1 Introduction and Tremblay [6]. Our software approach produces

a performance impact consistent with hardware-based
Checkpointing is a well understood method for im- techniques [6] and has the added benefit of making N

plementing rollback recovery when system errors occur a compile-time parameter.
[2-41. In case of a detected fault, the system is rolled
back to a previous checkpoint containing a consistent This paper extends compiler-assisted multiple in-

state of the system [5). Full checkpointing may per- struction retry to include a broad class of code exe-

mit long error detection latency at the expense of long cution failures. The error model is expanded to al-
mitconerro timelow any legal path in the control flow graph (CFG)

When transient processor errors occur, multiple in- thus allowing branch recovery. Similar compiler tech-struction retry can be an effective alternative to full niques to those we previously developed [1] are shownstuch ting an rolback recovery i6-8]. Multiple to be effective in resolving the hazards. Finally, a com-checkpointing and rollba reco w ( f8a fewtin-e bined compiler/hardware scheme is introduced which
instruction retry within a sliding window of a few in-compilation time, and perfor-
structions [6), or re-execution of a few cycles [8], can be redce c th
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2 Error Model and Hazard Classifica- ..............................

tion

The model of targeted errors is summarized as fol- I j
lows. First, the maximum error detection latency is
N instructions. Second, memory and I/0 have de- °- rollback
layed write buffers and can rollback N cycles. Third,
the states of the program counter are preserved by an
external recording device or by shadow registers [6].
Finally, the CPU state can be restored by loading the
correct contents of the register file and the program
counter. I~ Ik  ]x Iij

In addition to the above, any error which does not ...............

manifest itself as an illegal path in the CFG, is also error

allowed provided that the register file contents do not detected

spontaneously change and data is not written to an
incorrect register location. Figure 1: On-path and Branch Hazards.

Errors targeted for recovery via multiple instruction
retry are summarized as follows:

during execution of the original instruction sequence.
1. CPU errors such as those caused by an ALU. Hazards of the first type will be referred to as on-path

2. Incorrect values read from I/O, memory, the reg- hazards. Hazards of the second type will be referred

ister file, or external functional units such as the to as branch hazards.
floating point unit. 3 Compiler Based Hazard Resolution

3. Correct/incorrect values read from incorrect lo-
cations within the I/O, memory, or register file. Our previous techniques resolved on-path hazards

4. Incorrect branch decisions resulting from a per- in four phases [1]. Phase 1 resolved pseudo register

missible error. hazards, phase 2 resolved machine register hazards,
phase 3 resolved inter-procedural register hazards, and

The code can be represented as a CFG, G(V, E), phase 4 used nop insertion to resolve the remaining
where V is the set of nodes denoting instructions and hazards. This section describes compiler techniques
E the set of edges denoting flow information. If there for resolving branch hazards.
is a direct control flow from instruction i, denoted 1j,
to I, where 1. E V and 1, E V, then there is an edge 3.1 Pseudo Registers
(Ii,Ij) E E.

The hazard set H of the error model is defined as The on-path hazard of Figure 1 can be resolved
the set of pseudo or machine registers whose values are by renaming the definition register in I, from x to y.
inconsistent during different executions of the same Node splitting and loop expansion are used to break all
instruction sequence due to retry. data dependencies which require the use register in Ij

Hazards can be of two types; those that appear as to be renamed as a result of renaming x [1, 10]. Loop
anti-dependencies [101 of length < N in G(V, E), and protection is used to maintain loop integrity during
those that appear at branch boundaries. Figure 1 il- node splitting and loop expansion. Renaming is also
lustrates both types hazards. If an error occurring effective in resolving branch hazards. The next step -.

prior to instruction Ij is detected after instruction Ii is to see how node splitting, loop expansion and loop .
and a rollback is attempted, an incorrect value may protection apply to branch hazards.
be contained in register x. The first type of hazard Figures 2(a) and 2(b) show a typical data depen- LJ
occurs if, after rollback, x is used in an instruction dence (requiring node splitting) and the node splitting
along the original path (e.g., I,). The second type technique respectively. In Figure 2(a), renaming x in -

of hazard occurs if x is used in an instruction along a Ii to y will ultimately require the renaming of the
new path (e.g., Ik). This can happen if the error caus- use register x in Ij to y since m ultiple definitions of ------------
ing the rollback results in an incorrect branch decision x reach Ik. To break this dependence, the following
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Figure 2: Node Splitting. add arcs

node splitting criterion is used: If multiple definitions (b)

of x reach Ik and x is in the live-in set of Ik, Ik will
be split into two identical nodes. This "unzipping" is Figure 3: Machine Register Hazards.
shown in Figure 2(b). Loop protection assures that
no loop header is split [1].

Node splitting and loop protection operate on the 3.4 Nop Insertion
data flow parameters of the CFG. Since these param-
eters are unaffected by the type of hazard considered, Spill code as a result of register allocation can cre-
both techniques work equally well for branch hazards. ate on-path and branch hazards. A similar problem
This is not the case for the loop expansion transfor- exists with the stack pointer and frame pointer. Some
mation. branch hazards may also remain that were unresolved

Loop expansion is used for resolving a hazard which with the loop expansion transformation. On-path haz-
traverses a loop back edge. We have experimentally ards are resolved by inserting nop instructions directly
observed a low rate of occurrence for branch hazards before the hazard instruction so that the rollback will
traversing loop back edges. We therefore resolve all be below the last use of the hazard register. This
such branch hazards in the nop insertion phase. technique does not work for branch hazards since the

distance between the definition and the use instruc-
3.2 Machine Registers tions are not relevant. Instead, nop insertion is used

to increase the distance from the hazard instruction to
Once hazards have been eliminated through renam- its nearest prtlecessor branch. In this case a rollback

ing they can reappear as the physical registers are will be below the branch.
assigned. Figure 3 shows the elimination of on-path
and branch hazards by adding arcs to the dependency 4 Hardware Assisted Hazard Resolu-
graph used for register allocation. tion

3.3 Inter-Procedural Hazards
It was shown in Section 3 that both on-path and

Inter-procedural register saving conventions can branch hazards can be resolved using compiler tech-
create immediate on-path hazards [1]. Branch hazards niques. However, based on unique characteristics of
are not immediately created at procedural boundaries the two hazard types, we can design an efficient 6om-
and therefore no additional action is taken. bined compiler/hardware resolution technique.



The on-path hazard shown in Figure 1 is such that the contents of the read buffer are popped and loaded
after rollback of N instructions, the original N instruc- back into the register file. For an on-path hazard, the
tions are re-executed leading back to Ii. Recovery in path taken after the rollback will be the same as the
the presence of on-path hazards can be aided by main- path taken prior to rollback and each read of rL will
taining a register read history of depth N in hardware. produce the same value as before. Branch hazards will

Examining the branch hazard in Figure 1, it is seen be removed by the compiler. It is assumed that the
that at the time x is defined in I, it is not possible to read buffer is an integral part of the register file and
determine dynamically whether it is a hazard. After any error in the system does not corrupt the transfer
retry, control flow may proceed down a path that uses to the read buffer or its contents.
z prior to redefinition (in this case it is a hazard) or it In contrast to a history buffer which forces a read
may proceed down a path where x is redefined before of rk prior to writing rk , the read buffer monitors the
being iiwd (in this case there is n iazard). In conLrast register file ports and stores only the values read as
to on-path hazards, branch hazards are a function of part of the normal program flow and therefore should
possible future paths (i.e., after rollback). A delayed not significantly impact the register file performance
write or history buffer could be used to resolve such or CPU cycle time. The read buffer is twice the width
hazards, however these schemes conservatively resolve of a register with a depth of N. This is twice the size of
on-path hazards as well. An alternative is to use com- a delayed write buffer, but eliminates the requirement
piler transformations to resolve branch hazards and for complex bypassing and prioritization logic.
hardware to assist in on-path hazard resolution.

4.2 Combined Approach
4.1 Hardware Assist

On-path hazards were 3 to 4 times more frequent
Figure 4 shows a hardware scheme to resolve on- than branch hazards across the five benchmark pro-

path hazards. In contrast to a write buffer [61 which grams evaluated. This would imply an improvement
in performance when resolving only branch hazards
using compiler techniques. The difficulty arises in de-
termining which branch hazards to resolve. In addi-
tion to resolving all on-path hazards, the read buffer
will resolve some branch hazards.

Figure 5 shows an on-path hazard and a branch
hazard both with definitions of x in 1i and uses of x,
after rollback, in instructions Ij and Ij respectfully.
Note that if path I is initially taken, the read buffer
will contain the old value of x and rollback would

Register be successful. However if path m is taken, the read
buffer will not contain the old value of x and rollback
would be unsuccessful. If only paths such as I exist,

t , read Buffer the presence of the on-path hazard assures successful

A B N C rollback. In this case, resolution of the branch hazard
using compiler techniques is not necessary.

The current software calculates on-path hazards
and total hazards, however it is not yet capable of

Figure 4: read Buffer. accounting for read buffer resolution of branch haz-
ards. Compiler resolution of (total hazards minus on-

is attached to the input port of the register file, a read path hazards) would be overly optimistic and result in
buffer is attached to the output ports of the register incorrect performance impact. In lieu of direct mea-
file. Each time a register is used it appears on the read surements, a conservative measure of the range of im-
port and is pushed into the read buffer. If a register provement that could be expected with the read buffer
rk is defined in I and it is an on-path hazard, then rk was obtained using a transformation on the unmodi-
must have been read within the last N cycles. In this fled (i.e., original) assembler level code.
case, the read buffer will contain the old value and it The transformation creates on-path hazards when
is permissible to write the new value into the regis- necessary to assure that all branch hazards are re-
ter file. In the event of a rollback of N instructions, solved by the read buffer. Given one such branch haz-



. " ... and CMP are well-known UNIX utilities and PUZZLE

is a simple game.
... , path 1 rollback The results are summarized in Figures 6 through

15. Two groups of results are shown for each bench-
mark. The first group shows performance measured

...... ".by run time overhead (OH), in seconds, on the DEC-
station 3100 and the second group by code size over-

head, in number of assembly instructions emitted by
the code generator, not including the library routines
and other fixed overhead, s/w: op represents perfor-

"x I mance impact using software transformations to re-
path m , move on-path hazards only and s/w: op & br shows

performance impacts using similar transformations to
remove both on-path and branch hazards.

er ro 5.3 Performance Analysis
error .............

The compiler transformations introduce perfor-
mance impact in several ways. Loop protection in-

5: read Buffer Resolution of Branch Hazards serts save/restore operations at the head and tail of
the loop. This increases the path length and therefore

increases run time. Additional arcs in the dependency
ard which defines physical register rk at instruction graph can cause more spill code to be generated, in-
Ii, the transformation inserts a MOV rk, ra instruc- creasing memory references and cache misses. Nop
tion immediately before Ii. This guarantees that all insertion can be costly since up to N nops could be
paths leading to Ii are like path I in Figure 5. Section inserted for each unresolved hazard. Finally, the in-
5 includes experimental results using this transforma- crease in code size (mainly due to loop expansion) may
tion. cause more runtime cache misses.

The loop expansion transformation, however can

5 Performance Evaluation improve performance over a compiler that does not
have this optimization technique as demonstrated by
the run-time results for CMP and PUZZLE [12]. Once5.1 Implementation the loop is expanded, some condition checks and index

operations can be eliminated. Also the save/restore
The transformation algorithms have been imple- operations from loop protection shorten the live ranges

mented in the MIPS code generator of the IMPACT C of some registers thus allowing more efficient regis-

compiler [11]. Transformations resolving pseudo regis- ter allocation. Only the latter optimization is imple-

ter hazards (loop protection, node splitting, and loop mented in the software described in this paper.

expansion) are called just before register allocation.

Transformations resolving machine register hazards 5.3.1 Compiler-Only
are called after the live range constraints have been
generated and before physical register allocation. The It is interesting to note that there is negligible incre-
nop insertion algorithm is called before the assembly mental performance impact introduced by resolving
code output routine. branch hazards in addition to on-path for the bench-

marks evaluated. Two key factors account for this
5.2 Benchmarks result. First, on-path hazards dominate in frequency

of occurrence and second, resolving an on-path haz-
Five benchmark programs were cross-compiled on ard at instruction 1i through renaming can sometimcs

a SPARCserver 490 and run on a DECstation 3100. resolve a branch hazard at instruction Ii. Addition-
QUEEN is based on the eight-queen program but with ally, resolving a similar on-path hazard with nop in-
12 queens as input. QSORT implements the quick sertion may resolve a corresponding branch hazards
sort algorithm to process a randomly generated array. by increasing the distance between it and its nearest
Both QUEEN and QSORT use recursive calls. WC predecessor branch.



5.3.2 Compiler/Hardware Time OH(%)()s/w: op
Figures 6 through 15 also show the run time and code 35- s/w: op & br -o-

size overheads for each benchmark assuming the read 30- h/w: op, s/w: br ..&,..
buffer to resolve on-path hazards and the assembler 25-
level transformation described in Section 4. These 20-
measurements are labeled h/w: op, s/w: br.

Time OH 10-
S s/w: op -o- 5-

35- s/w: op & br -0- 0- . A . #..., ...A...A
30- h/w:op,s/w:br -5 _ _I

25- 1234
20- Rollback Distance
1 ,Figure 8: WC, Runtime Overhead.
10
5 -

0- , . "A ... " a Size OH
S) s/w: op

400- s/w: op & br --1 2 3 4 5 6 7 8 9 10 350- h/w:op, s/w:br--&-.
Rollback Distance 300-

Figure 6: QUEEN, Runtime Overhead. 250-
200-

Size OH 150-(%) ~ .
400-) s/w: op 100-

0 s/w: op & br -G- 50-
350- hw: op, s/w: br -A.. A300- ,''0 1 ----... 3 -,4-- 5 -- 6 ,7-.-9,-0

0 12345678910

250-- Rollback Distance
200-

150- Figure 9: WC, Program Size Overhead.
100-

50- PUZZLE indicate that compiler techniques are still
0 . ..... .. useful in reducing performance penalties. These com-

0 1 2 3 4 5 6 7 8 10 piler techniques however, have the disadvantages of
Rollback Distance requiring recompilation, long compilation times, and

Figure 7: QUEEN, Program Size Overhead. significant code growth.

Current work is underway to modify the compiler
The results are worst case in the sense that many transformations to allow branch hazard resolution

of the branch hazards could have been resolved with only. All indications are that the performance impact,
no performance impact using the compiler techniques code growth and compilation time will be reduced
of Section 3. Instead, they are resolved by insertion below the current levels. Our experiments indicate
of MOV instructions which causes a guaranteed (al- that a combined compiler/hardware scheme for haz-
though small) performance impact. ard resolution can produce lower performance penal-

All benchmarks except one have less than 4% per- ties than either a compiler-only scheme or a hardware-
formance impact and all benchmarks have less than only scheme. It is also noted that the code size is
14% code size increase. Given the read buffer feature reduced relative to a compiler-only scheme and that
and the option to use compiler techniques as well, all hardware complexity is reduced relative to a delayed
benchmarks are below 4% performance impact with write scheme.
an average impact of 1%. The run time results of
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Figure 10: QSORT, Runtime Overhead. Figure 12: CMP, Runtime Overhead.
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Figure 11: QSORT, Program Size Overhead. Figure 13: CMP, Program Size Overhead.

6 Concluding Remarks Compiler techniques are used to resolve the remain-
ing branch hazards with a modest increase in overall

Two schemes have been described to efficiently sup- compe time The perfhordace msreme nt aindi-

port multiple instruction rollback with branch recov- cater peroat e ipc hnete compiler/hr waesheec n lyhiv

ery, a compiler-only scheme and a combined corn- lwrpromneipc hnete oplrol
pile/hadwar sceme. Hazrd cassficaionhas scheme or a delayed write hardware scheme. It should

provd uefu incontrutionof he ombnedschme. be noted that our scheme applies only to the CPU and

Compiler transformations such as pseudo register re- reues gadditounalhawre ograinh statuswres The

naming, node splitting, loop protection, and loop ex- tea buror icnte siroga dlatus writc. The

pansion were shown to be effective in resolving on- rebufferoids tie heqizee fo byassinayd ririti-e

path and branch hazards with negligible performance butio avoisterqieetfrbyasn.n roi

impacts over resolving on-path hazards alone. The ainlgc

compiler-only approach yields performance impacts
consistent with previous compiler techniques [1] and 7 Acknowledgements
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was introduced to resolve on-path hazards by main- The authors wish to thank Scott Mahlke and
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